Freescale Semiconductor

10 kPa Uncompensated Silicon Pressure Sensor

Freescale Semiconductor has developed a low cost, high volume, miniature pressure sensor package which is ideal as a sub-module component or a disposable unit. The unique concept of the Chip Pak allows great flexibility in system design while allowing an economic solution for the designer. This standard, low cost, uncompensated sensor permits manufacturers to design and add their own external temperature compensating and signal conditioning networks. Compensation techniques are simplified because of Freescale's single element strain gauge design.

Features

- Low Cost
- Ratiometric to Supply Voltage
- Polysulfone Case Material (ISO 10993)
- Provided in Easy-to-Use Tape and Reel
- Patented Silicon Shear Stress Strain Gauge Design

MPXC12DT1

Pressure Sensor 55 mV Full Scale Span (Typical) 0 to 10 kPa

Application Examples

Respiratory Diagnostics

ORDERING INFORMATION							
Device Name	Package Options	Case No.	Pressure Type			Device Marking	
Device Maine	r ackage Options	Case NO.	Gauge	Differential	Absolute	Device Marking	
MPXC12DTI	Tape and Reel	423A		•		Date Code, Lot ID	

CHIP PAK PACKAGE

NOTE: The die and wire bonds are exposed on the front side of the Chip Pak (pressure is applied to the backside of the device). Front side die and wire protection must be provided in the customer's housing. Use caution when handling the devices during all processes.

MPXC12DT1 Rev 0, 11/2010

Pressure

Freescale Semiconductor's Bio-compatible Pressure Sensors have been designed for medical usage by combining the performance of Freescale Semiconductor's shear stress pressure sensor design and the use of biomedically approved materials. Materials with a proven history in medical situations have been chosen to provide a sensor that can be used with confidence in applications, such as invasive blood pressure monitoring. It can be sterilized using ethylene oxide. The portions of the pressure sensor that are required to be biomedically approved are the rigid housing and the gel coating.

The rigid housing is molded from a white, medical grade polysulfone that has passed extensive biological testing including: 10993-5:1999, 10993-10:2002, and 10993-11:1993.

These sensors contain a silicone dielectric gel which covers the silicon piezoresistive sensing element. The gel is a nontoxic, nonallergenic elastomer system which meets all USP XX Biological Testing Class V requirements. The properties of the gel allow it to transmit pressure uniformly to the diaphragm surface, while isolating the internal electrical connections from the corrosive effects of fluids, such as saline solution. The gel provides electrical isolation sufficient to withstand defibrillation testing, as specified in the proposed Association for the Advancement of Medical Instrumentation (AAMI) Standard for blood pressure transducers. A biomedically approved opaque filler in the gel prevents bright operating room lights from affecting the performance of the sensor.

The MPXC12DT1 is a no-gel option.

MAXIMUM RATINGS

Table 1. Maximum Ratings⁽¹⁾

Rating	Symbol	Value	Unit
Maximum Pressure (Backside)	P _{max}	75	kPa
Storage Temperature	T _{stg}	-25 to +85	°C
Operating Temperature	T _A	+15 to +40	°C

1. Exposure beyond the specified limits may cause permanent damage or degradation to the device.

OPERATING CHARACTERISTICS

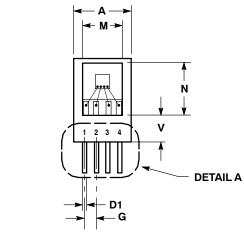
Table 2. Operating Characteristics ($V_S = 3.0 \text{ Vdc}$, $T_A = 25^{\circ}\text{C}$ unless otherwise noted, P1 > P2)

Characteristic	Symbol	Min	Тур	Max	Unit
Pressure Range ⁽¹⁾	P _{OP}	0	—	10	kPa
Supply Voltage ⁽²⁾	V _S		3	10	Vdc
Supply Current	ا _o	_	6.0	—	mAdc
Full Scale Span ⁽³⁾	V _{FSS}	45	65	80	mV
Offset ⁽⁴⁾	V _{off}	0	20	35	mV
Sensitivity	ΔV/ΔΡ		6.5	—	mV/kPa
Linearity	_	0	—	10	%V _{FSS}
Pressure Hysteresis (0 to 10 kPa)	-		±0.1	—	%V _{FSS}
Temperature Hysteresis (+15°C to +40°C)		_	±0.1	_	%V _{FSS}
Input Impedance	Z _{in}	400	_	550	Ω
Output Impedance	Z _{out}	750	_	1250	Ω
Response Time ⁽⁵⁾ (10% to 90%)	t _R	_	1.0	—	ms
Warm-Up ⁽⁶⁾	-	_	20	v	ms
Offset Stability ⁽⁷⁾	-	_	±0.5	—	%V _{FSS}

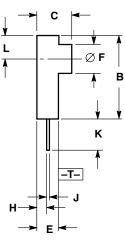
1. 1.0 kPa (kiloPascal) equals 0.145 psi.

2. Device is ratiometric within this specified excitation range. Operating the device above the specified excitation range may induce additional error due to device self-heating.

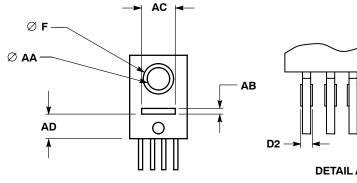
3. Full Scale Span (V_{FSS}) is defined as the algebraic difference between the output voltage at full rated pressure and the output voltage at the minimum rated pressure.

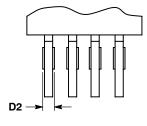

4. Offset (V_{off}) is defined as the output voltage at the minimum rated pressure.

5. Response Time is defined as the time for the incremental change in the output to go from 10% to 90% of its final value when subjected to a specified step change in pressure.


6. Warm-up Time is defined as the time required for the product to meet the specified output voltage after the pressure is stabilized.

7. Offset stability is the product's output deviation when subjected to 1000 hours of Pulsed Pressure, Temperature Cycling with Bias Test.


PACKAGE DIMENSIONS


FRONT VIEW

END VIEW

BACK VIEW

DETAIL A

		INCHES		MILLIMETERS		
	DIM	MIN	MAX	MIN	MAX	
	Α	0.240	0.260	6.10	6.60	
[В	0.350	0.370	8.89	9.40	
	С	0.140	0.150	3.56	3.81	
	D1	0.012	0.020	0.30	0.51	
	D2	0.014	0.022	0.36	0.56	
	Е	0.088	0.102	2.24	2.59	
[F	0.123	0.128	3.12	3.25	
	G	0.045	0.055	1.14	1.40	
	Н	0.037	0.047	0.94	1.19	
	J	0.007	0.011	0.18	0.28	
	Κ	0.120	0.140	3.05	3.56	
	L	0.095	0.105	2.41	2.67	
	М	0.165	0.175	4.19	4.45	
	Ν	0.223	0.239	5.66	6.07	
	۷	0.105	0.115	2.67	2.92	
	AA	0.095	0.107	2.41	2.72	
	AB	0.015	0.035	0.38	0.89	
[AC	0.120	0.175	3.05	4.45	
	AD	0.100	0.115	2.54	2.92	

NOTES: 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982. 2. CONTROLLING DIMENSION: INCH.

STYLE 2: PIN 1. GND 2. S+ 3. Vs 4. S-

CASE 423A-03 **ISSUE C CHIP PAK PACKAGE**

Sensors Freescale Semiconductor

How to Reach Us:

Home Page: www.freescale.com

Web Support:

http://www.freescale.com/support

USA/Europe or Locations Not Listed:

Freescale Semiconductor, Inc. Technical Information Center, EL516 2100 East Elliot Road Tempe, Arizona 85284 1-800-521-6274 or +1-480-768-2130 www.freescale.com/support

Europe, Middle East, and Africa:

Freescale Halbleiter Deutschland GmbH Technical Information Center Schatzbogen 7 81829 Muenchen, Germany +44 1296 380 456 (English) +46 8 52200080 (English) +49 89 92103 559 (German) +33 1 69 35 48 48 (French) www.freescale.com/support

Japan:

Freescale Semiconductor Japan Ltd. Headquarters ARCO Tower 15F 1-8-1, Shimo-Meguro, Meguro-ku, Tokyo 153-0064 Japan 0120 191014 or +81 3 5437 9125 support.japan@freescale.com

Asia/Pacific:

Freescale Semiconductor China Ltd. Exchange Building 23F No. 118 Jianguo Road Chaoyang District Beijing 100022 China +86 010 5879 8000 support.asia@freescale.com

For Literature Requests Only:

Freescale Semiconductor Literature Distribution Center 1-800-441-2447 or +1-303-675-2140 Fax: +1-303-675-2150 LDCForFreescaleSemiconductor@hibbertgroup.com Information in this document is provided solely to enable system and software implementers to use Freescale Semiconductor products. There are no express or implied copyright licenses granted hereunder to design or fabricate any integrated circuits or integrated circuits based on the information in this document.

Freescale Semiconductor reserves the right to make changes without further notice to any products herein. Freescale Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Freescale Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters that may be provided in Freescale Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals", must be validated for each customer application by customer's technical experts. Freescale Semiconductor does not convey any license under its patent rights nor the rights of others. Freescale Semiconductor products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Freescale Semiconductor product could create a situation where personal injury or death may occur. Should Buyer purchase or use Freescale Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold Freescale Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Freescale Semiconductor was negligent regarding the design or manufacture of the part.

Freescale and the Freescale logo are trademarks of Freescale Semiconductor, Inc., Reg. U.S. Pat. & Tm. Off. All other product or service names are the property of their respective owners.

© Freescale Semiconductor, Inc. 2010. All rights reserved.

